miércoles, 25 de mayo de 2011

Proyecto Final

El proyecto final trataba sobre la representacion de las topologias de Red de una manera facil y sencilla.

La representacion que mi equipo realizo fue por medio de peces y frascos conectados con tubos. Se utilizo fondos de botellas para que fuesen los contenedores, que en otras palabras serian las computadoras que contienen y trabajan la informacion; la conexion entre los frascos eran con tubos para que los peces pasaran por ellos, los cuales representaban la conexion en red por donde pasa la informacion que serian los tubos; y por ultimo serian los peces que son la informacion que pasan por toda la red y fluye a traves de esta.




miércoles, 4 de mayo de 2011

Modelo de Interconexion de Sistemas Abiertos


El modelo de interconexión de sistemas abiertos, también llamado OSI (en inglés open system interconnection) es el modelo de red descriptivo creado por la Organización Internacional para la Estandarización en el año 1984. Es decir, es un marco de referencia para la definición de arquitecturas de interconexión de sistemas de comunicaciones.
[editar] Historia
A principios de 1980 el desarrollo de redes surgió con desorden en muchos sentidos. Se produjo un enorme crecimiento en la cantidad y tamaño de las redes. A medida que las empresas tomaron conciencia de las ventajas de usar tecnologías de conexión, las redes se agregaban o expandían a casi la misma velocidad a la que se introducían las nuevas tecnologías de red.
Para mediados de 1980, estas empresas comenzaron a sufrir las consecuencias de la rápida expansión. De la misma forma en que las personas que no hablan un mismo idioma tienen dificultades para comunicarse, las redes que utilizaban diferentes especificaciones e implementaciones tenían dificultades para intercambiar información. El mismo problema surgía con las empresas que desarrollaban tecnologías de conexiones privadas o propietarias. "Propietario" significa que una sola empresa o un pequeño grupo de empresas controlan todo uso de la tecnología. Las tecnologías de conexión que respetaban reglas propietarias en forma estricta no podían comunicarse con tecnologías que usaban reglas propietarias diferentes.
Para enfrentar el problema de incompatibilidad de redes, la Organización Internacional para la Estandarización (ISO) investigó modelos de conexión como la red de Digital Equipment Corporation (DECnet), la Arquitectura de Sistemas de Red (Systems Network Architecture) y TCP/IP a fin de encontrar un conjunto de reglas aplicables de forma general a todas las redes. Con base en esta investigación, la ISO desarrolló un modelo de red que ayuda a los fabricantes a crear redes que sean compatibles con otras redes.
Modelo de referencia OSI
Siguiendo el esquema de este modelo se crearon numerosos protocolos. El advenimiento de protocolos más flexibles donde las capas no están tan demarcadas y la correspondencia con los niveles no era tan clara puso a este esquema en un segundo plano. Sin embargo es muy usado en la enseñanza como una manera de mostrar cómo puede estructurarse una "pila" de protocolos de comunicaciones.
El modelo especifica el protocolo que debe ser usado en cada capa, y suele hablarse de modelo de referencia ya que es usado como una gran herramienta para la enseñanza de comunicación de redes. Este modelo está dividido en siete capas:
Capa física
Es la que se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico como a la forma en la que se transmite la información.
Sus principales funciones se pueden resumir como:
Definir el medio o medios físicos por los que va a viajar la comunicación: cable de pares trenzados (o no, como en RS232/EIA232), coaxial, guías de onda, aire, fibra óptica.
Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) que se van a usar en la transmisión de los datos por los medios físicos.
Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico).
Transmitir el flujo de bits a través del medio.
Manejar las señales eléctricas del medio de transmisión, polos en un enchufe, etc.
Garantizar la conexión (aunque no la fiabilidad de dicha conexión).
Capa de enlace de datos
Esta capa se ocupa del direccionamiento físico, de la topología de la red, del acceso al medio, de la deteccion de errores, de la distribución ordenada de tramas y del control del flujo.
Como objetivo o tarea principal, la capa de enlace de datos se encarga de tomar una transmisión de datos ” cruda ” y transformarla en una abstracción libre de errores de transmisión para la capa de red.  Este proceso se lleva a cabo dividiendo los datos de entrada en marcos (también llamados tramas) de datos (de unos cuantos cientos de bytes), transmite los marcos en forma secuencial, y procesa los marcos de estado que envía el nodo destino.
Capa de red
El objetivo de la capa de red es hacer que los datos lleguen desde el origen al destino, aún cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan encaminadores, aunque es más frecuente encontrar el nombre inglés routers y, en ocasiones enrutadores. Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewalls actúan sobre esta capa principalmente, para descartar direcciones de máquinas.
En este nivel se realiza el direccionamiento lógico y la determinación de la ruta de los datos hasta su receptor final.
Capa de transporte
Capa encargada de efectuar el transporte de los datos (que se encuentran dentro del paquete) de la máquina origen a la de destino, independizándolo del tipo de red física que se esté utilizando. La PDU de la capa 4 se llama Segmento o Datagrama, dependiendo de si corresponde a TCP o UDP. Sus protocolos son TCP y UDP; el primero orientado a conexión y el otro sin conexión. Trabajan, por lo tanto, con puertos lógicos y junto con la capa red dan forma a los conocidos como Sockets IP:Puerto (192.168.1.1:80).
Capa de sesión
Esta capa es la que se encarga de mantener y controlar el enlace establecido entre dos computadores que están transmitiendo datos de cualquier índole. Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles.
Capa de presentación
El objetivo es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres los datos lleguen de manera reconocible.
Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.
Esta capa también permite cifrar los datos y comprimirlos. Por lo tanto, podría decirse que esta capa actúa como un traductor.
Capa de aplicación
Ofrece a las aplicaciones la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (Post Office Protocol y SMTP), gestores de bases de datos y servidor de ficheros (FTP), por UDP pueden viajar (DNS y Routing Information Protocol). Hay tantos protocolos como aplicaciones distintas y puesto que continuamente se desarrollan nuevas aplicaciones el número de protocolos crece sin parar.
Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente.

jueves, 14 de abril de 2011

Linux

Linux es, a simple vista, un Sistema Operativo.




Es una implementación de libre distribución UNIX para computadoras personales (PC), servidores, y estaciones de trabajo. Fue desarrollado para el i386 y ahora soporta los procesadores i486, Pentium, Pentium Pro y Pentium II, así como los clones AMD y Cyrix. También soporta máquinas basadas en SPARC, DEC Alpha, PowerPC/PowerMac, y Mac/Amiga Motorola 680x0.




Como sistema operativo, Linux es muy eficiente y tiene un excelente diseño. Es multitarea, multiusuario, multiplataforma y multiprocesador; en las plataformas Intel corre en modo protegido; protege la memoria para que un programa no pueda hacer caer al resto del sistema; carga sólo las partes de un programa que se usan; comparte la memoria entre programas aumentando la velocidad y disminuyendo el uso de memoria; usa un sistema de memoria virtual por páginas; utiliza toda la memoria libre para cache; permite usar bibliotecas enlazadas tanto estática como dinámicamente; se distribuye con código fuente; usa hasta 64 consolas virtuales; tiene un sistema de archivos avanzado pero puede usar los de los otros sistemas; y soporta redes tanto en TCP/IP como en otros protocolos.


QUE ES LINUX
Linux es un núcleo de sistema operativo libre tipo Unix.[2] Es uno de los principales ejemplos de software libre. Linux está licenciado bajo la GPL v2 y está desarrollado por colaboradores de todo el mundo. El desarrollo del día a día tiene lugar en la Linux Kernel Mailing List.

El núcleo Linux fue concebido por el entonces estudiante de ciencias de la computación finlandés, Linus Torvalds, en 1991. Linux consiguió rápidamente desarrolladores y usuarios que adoptaron códigos de otros proyectos de software libre para su uso en el nuevo sistema operativo. El núcleo Linux ha recibido contribuciones de miles de programadores.

Normalmente Linux se utiliza junto a un empaquetado de software, llamado distribución Linux.


HISTORIA DE LINUX


LINUX hace su aparicion a principios de la decada de los noventa, era el año 1991 y por aquel entonces un estudiante de informatica de la Universidadde Helsinki, llamado Linus Torvalds empezo, -como una aficion y sin poderse imaginar a lo que llegaria este proyecto, a programar las primeras lineas de codigo de este sistema operativo llamado LINUX.

Este comienzo estuvo inspirado en MINIX, un pequeño sistema Unix desarrollado por Andy Tanenbaum. Las primeras discusiones sobre Linux fueron en el grupo de noticias comp.os.minix, en estas discusiones se hablaba sobre todo del desarrollo de un pequeño sistema Unix para usuarios de Minix que querian mas.

Linus nunca anuncio la version 0.01 de Linux (agosto 1991), esta version no era ni siquiera ejecutable, solamente incluia los principios del nucleo del sistema, estaba escrita en lenguaje ensamblador y asumia que uno tenia acceso a un sistema Minix para su compilacion.

El 5 de octubre de 1991, Linus anuncio la primera version "Oficial" de Linux, -version 0.02. Con esta version Linus pudo ejecutar Bash (GNU Bourne Again Shell) y gcc (El compilador GNU de C) pero no mucho mas funcionaba. En este estado de desarrollo ni se pensaba en los terminos soporte,documentacion, distribucion .Despues de la version 0.03, Linus salto en la numeracion hasta la 0.10, mas y mas programadores a lo largo y ancho deinternet empezaron a trabajar en el proyecto y despues de sucesivas revisiones, Linus incremento el numero de version hasta la 0.95 (Marzo 1992). Mas de un año despues (diciembre 1993) el nucleo del sistema estaba en la version 0.99 y la version 1.0 no llego hasta el 14 de marzo de 1994. Desde entonces no se ha parado de desarrollar, la version actual del nucleo es la 2.2 y sigue avanzando dia a dia con la meta de perfeccionar y mejorar el sistema.


VENTAJAS DE LINUX


1. Linux es básicamente un duplicado de UNIX, lo que significa que incorpora muchas de las ventajas de este importante sistema operativo.

2. En Linux pueden correr varios procesos a la vez de forma ininterrumpida como un servidor de red al tiempo que un procesador de textos, una animación, copia de archivos o revisar el correo electrónico.

3. Seguridad porque es un sistema operacional diseñado con la idea de Cliente - Servidor con permisos de acceso y ejecución a cada usuario. Esto quiere decir que varios usuarios pueden utilizar una misma maquina al tiempo sin interferir en cada proceso.

4. Linux es software libre, casi gratuito. Linux es popular entre programadores y desarrolladores e implica un espíritu de colaboración.

5. Linux integra una implementación completa de los diferentes protocolos y estándares de red, con los que se puede conectar fácilmente a Internet y acceder a todo tipo de información disponible.

6. Su filosofía y sus programas están dictados por el movimiento ``Open Source'' que ha venido crecido en los últimos años y ha adquirido el suficiente fortaleza para hacer frente a los gigantes de la industria del software.

7. Linux puede ser utilizado como una estación personal pero también como un potente servidor de red.

8. Linux incorpora una gama de sistemas de interfaz gráfica (ventanas) de igual o mejor calidad que otras ofrecidas en muchos paquetes comerciales.

9. Posee el apoyo de miles de programadores a nivel mundial.

10. El paquete incluye el código fuente, lo que permite modificarlo de acuerdo a las necesidades del usuario.

11. Utiliza varios formatos de archivo que son compatibles con casi todos los sistemas operacionales utilizados en la actualidad.


DESVENTAJAS DE LINUX




1. Linux no cuenta con una empresa que lo respalde, por lo que no existe un verdadero soporte como el de otros sistemas operativos.

2. La pendiente de aprendizaje es lenta.

3. No es tan fácil de usar como otros sistemas operativos, aunque actualmente algunas distribuciones están mejorando su facilidad de uso, gracias al entorno de ventanas, sus escritorios y las aplicaciones diseñadas específicamente para él, cada día resulta más sencillo su integración y uso.

4. Documentación y terminología muy técnica.

5. Para usuarios corrientes, todavía no es un sistema de escritorio.

6. Funciona únicamente con proveedores de hardware que accedieron a la licencia GPL y en algunas instancias no es compatible con variedad de modelos y marcas.

7. Requiere consulta, lectura e investigación en lista, foros o en bibliografía dedicada al tema.

8. La configuración de dispositivos de entrada y salida no es trivial.

9. Muy sensible al hardware.

10. Muchas distribuciones e idiomas.

11. Hay que leer y entender código



CARACTERISTICAS






· Multitarea: La palabra multitarea describe la habilidad de ejecutar varios programas al mismo tiempo.
LINUX utiliza la llamada multitarea preeventiva, la cual asegura que todos los programas que se estan utilizando en un momento dado seran ejecutados, siendo el sistema operativo el encargado de ceder tiempo de microprocesador a cada programa.

·Multiusuario: Muchos usuarios usando la misma maquina al mismo tiempo.

· Multiplataforma: Las plataformas en las que en un principio se puede utilizar Linux son 386-, 486-. Pentium, Pentium Pro, Pentium II,Amiga y Atari, tambien existen versiones para su utilizacion en otras plataformas, como Alpha, ARM,MIPS, PowerPC y SPARC.

· Multiprocesador: Soporte para sistemas con mas de un procesador esta disponible para Intel y SPARC.

· Funciona en modo protegido 386.

· Protección de la memoria entre procesos, de manera que uno de ellos no pueda colgar el sistema.

· Carga de ejecutables por demanda: Linux sólo lee del disco aquellas partes de un programa que están siendo usadas actualmente.

· Política de copia en escritura para la compartición de páginas entre ejecutables: esto significa que varios procesos pueden usar la misma zona de memoria para ejecutarse. Cuando alguno intenta escribir en esa memoria, la página (4Kb de memoria) se copia a otro lugar. Esta política de copia en escritura tiene dos beneficios: aumenta la velocidad y reduce el uso de memoria.

· Memoria virtual usando paginación (sin intercambio de procesos completos) a disco: A una partición o un archivo en el sistema de archivos, o ambos, con la posibilidad de añadir más áreas de intercambio sobre la marcha Un total de 16 zonas de intercambio de 128Mb de tamaño máximo pueden ser usadas en un momento dado con un límite teórico de 2Gb para intercambio. Este limite se puede aumentar facilmente con el cambio de unas cuantas lineas en el codigo fuente.

· La memoria se gestiona como un recurso unificado para los programas de usuario y para el caché de disco, de tal forma que toda la memoria libre puede ser usada para caché y ésta puede a su vez ser reducida cuando se ejecuten grandes programas.

· Librerías compartidas de carga dinámica (DLL's) y librerías estáticas.

· Se realizan volcados de estado (core dumps) para posibilitar los análisis post-mortem, permitiendo el uso de depuradores sobre los programas no sólo en ejecución sino también tras abortar éstos por cualquier motivo.

· Compatible con POSIX, System V y BSD a nivel fuente.

· Emulación de iBCS2, casi completamente compatible con SCO, SVR3 y SVR4 a nivel binario.

· Todo el código fuente está disponible, incluyendo el núcleo completo y todos los drivers, las herramientas de desarrollo y todos los programas de usuario; además todo ello se puede distribuir libremente. Hay algunos programas comerciales que están siendo ofrecidos para Linux actualmente sin código fuente, pero todo lo que ha sido gratuito sigue siendo gratuito.

· Control de tareas POSIX.

· Pseudo-terminales (pty's).

· Emulación de 387 en el núcleo, de tal forma que los programas no tengan que hacer su propia emulación matemática. Cualquier máquina que ejecute Linux parecerá dotada de coprocesador matemático. Por supuesto, si el ordenador ya tiene una FPU (unidad de coma flotante), esta será usada en lugar de la emulación, pudiendo incluso compilar tu propio kernel sin la emulación matemática y conseguir un pequeño ahorro de memoria.

· Soporte para muchos teclados nacionales o adaptados y es bastante fácil añadir nuevos dinámicamente.

· Consolas virtuales múltiples: varias sesiones de login a través de la consola entre las que se puede cambiar con las combinaciones adecuadas de teclas (totalmente independiente del hardware de video). Se crean dinámicamente y puedes tener hasta 64.

· Soporte para varios sistemas de archivo comunes, incluyendo minix-1, Xenix y todos los sistemas de archivo típicos de System V, y tiene un avanzado sistema de archivos propio con una capacidad de hasta 4 Tb y nombres de archivos de hasta 255 caracteres de longitud.

· Acceso transparente a particiones MS-DOS (o a particiones OS/2 FAT) mediante un sistema de archivos especial: no es necesario ningún comando especial para usar la partición MS-DOS, esta parece un sistema de archivos normal de Unix (excepto por algunas restricciones en los nombres de archivo, permisos, y esas cosas). Las particiones comprimidas de MS-DOS 6 no son accesibles en este momento, y no se espera que lo sean en el futuro. El soporte para VFAT (WNT, Windows 95) ha sido añadido al núcleo de desarrollo y estará en la próxima versión estable.

· Un sistema de archivos especial llamado UMSDOS que permite que Linux sea instalado en un sistema de archivos DOS.

· Soporte en sólo lectura de HPFS-2 del OS/2 2.1

· Sistema de archivos de CD-ROM que lee todos los formatos estándar de CD-ROM.

· TCP/IP, incluyendo ftp, telnet, NFS, etc.

· Appletalk.
· Software cliente y servidor Netware.

· Lan Manager / Windows Native (SMB), software cliente y servidor.

· Diversos protocolos de red incluidos en el kernel: TCP, IPv4, IPv6, AX.25, X.25, IPX, DDP, Netrom, etc.



QUE SON LAS DISTRUBUCIONES DE GNU/LINUX







Una distribución es un modo de facilitar la instalación, la configuración y el mantenimiento de un sistema GNU/Linux. Al principio, las distribuciones se limitaban a recopilar software libre, empaquetarlo en disquetes o CD-ROM y redistribuirlo o venderlo.

Ahora las grandes distribuciones -RedHat, SuSE, Caldera, Mandrake, Corel Linux, TurboLinux...- son potentes empresas que compiten entre sí por incluir el último software, a veces también software propietario, con instalaciones gráficas capaces de autodetectar el hardware y que instalan un sistema entero en unos cuantos minutos sin apenas preguntas.

Entre las distribuciones de GNU/Linux, destaca el proyecto Debian/GNU. Debian nace como una iniciativa no comercial de la FSF, aunque luego se independiza de ésta y va más allá del propio sistema GNU/Linux. Es la única de las grandes distribuciones que no tiene intereses comerciales ni empresariales. Son sus propios usuarios, muy activos, quienes mantienen la distribución de modo comunitario, incluidas todas sus estructuras de decisión y funcionamiento. Su objetivo es recopilar, difundir y promover el uso del software libre. Reúne el mayor catálogo de software libre, todos ellos probados, mantenidos y documentados por algún desarrollador voluntario.

En una distribución hay todo el software necesario para instalar en un ordenador personal; servidor, correo, ofimática, fax, navegación de red,seguridad, etc.



SISTEMA OPERATIVO UNIX


El sistema operativo UNIX se inicio como un proyecto de investigación y se ha convertido en un importante producto ampliamente utilizado en el mundo de los negocios, en el académico y en el gubernamental. Se trata de un sistema operativo potente, flexible y versátil, originado ya hace más de 30 años, que prácticamente puede ser instalado en cualquier tipo de plataforma, incluyendo los ordenadores personales monousuarios. El código fuente del sistema UNIX, y no sólo el código ejecutable, ha estado disponible a usuarios y programadores. A causa de esto, muchos programadores han sido capaces de adaptar UNIX de formas muy diferentes. Este carácter abierto, ha conducido a la introducción de un amplio rango de características nuevas y de versiones especializadas que se ajustan a necesidades particulares.


Como se sabe, Unix es un sistema multiusuario, multitarea y además, proporciona un buen entorno para el trabajo en red. Ofrece programas y servicios que permiten construir aplicaciones basadas en red. Ha sido básico para el desarrollo de los servicios en Internet y para el propio crecimiento de Internet. Consecuentemente, con la importancia creciente de la computación distribuida e Internet, está creciendo la popularidad del sistema UNIX. El sistema UNIX es mucho más fácil de portar a nuevas máquinas que otros sistemas operativos. Esta portabilidad es consecuencia directa de estar escrito casi completamente en un lenguaje de alto nivel, el lenguaje C. La portabilidad a un amplio rango de arquitecturas hace posible mover las aplicaciones de un sistema a otro.


Los sistemas operativos UNIX desarrollados en los Laboratorios Bell se cuentan entre los éxitos más notables en el campo de los sistemas operativos. Los sistemas UNIX ofrecen un ambiente amable para el desarrollo de programas y el procesamiento de textos. Brindan facilidad para combinar unos programas con otros, lo cual sirve para fomentar un enfoque modular, de piezas de construcción y orientado a las herramientas, para el diseño de programas. Una vez transportado un sistema operativo UNIX a otra máquina, un enorme acervo de programas de utilidad general queda disponible en la máquina de destino


CREADOR DE LINUX




Linus Benedict Torvalds (Helsinki, Finlandia, 28 de diciembre de 1969), es un ingeniero de software finlandés; es conocido por iniciar y mantener el desarrollo del "kernel" (en español, núcleo) Linux, basándose en el sistema operativo libre Minix creado por Andrew S. Tanenbaum y en algunas herramientas, los compiladores y un número de utilidades desarrollados por el proyecto GNU. Actualmente Torvalds es responsable de la coordinación del proyecto. Pertenece a la comunidad sueco-parlante de Finlandia.

domingo, 3 de abril de 2011

Medios de transmision

Medio de transmisión
El medio de transmisión constituye el canal que permite la transmisión de información entre dos terminales en un sistema de transmisión.
Las transmisiones se realizan habitualmente empleando ondas electromagnéticas que se propagan a través del canal.
A veces el canal es un medio físico y otras veces no, ya que las ondas electromagnéticas son susceptibles de ser transmitidas por el vacío.
Características
Entre las características más importantes dentro de los medios de transmisión se encuentra la velocidad de transmisión, la distorsión que introduce en el mensaje, y el ancho de banda.
En función de la naturaleza del medio, las características y la calidad de la transmisión se verán afectadas.
Clasificación
Dependiendo de la forma de conducir la señal a través del medio, los medios de transmisión se pueden clasificar en dos grandes grupos, medios de transmisión guiados y medios de transmisión no guiados.
Según el sentido de la transmisión podemos encontrarnos con 3 tipos diferentes: Simplex, Half-Duplex y Full-Duplex.
También los medios de transmisión se caracterizan por utilizarse en rangos de frecuencia de trabajo diferentes.
Medios de transmisión guiados
Los medios de transmisión guiados están constituidos por un cable que se encarga de la conducción (o guiado) de las señales desde un extremo al otro.
Las principales características de los medios guiados son el tipo de conductor utilizado, la velocidad máxima de transmisión, las distancias máximas que puede ofrecer entre repetidores, la inmunidad frente a interferencias electromagnéticas, la facilidad de instalación y la capacidad de soportar diferentes tecnologías de nivel de enlace.
La velocidad de transmisión depende directamente de la distancia entre los terminales, y de si el medio se utiliza para realizar un enlace punto a punto o un enlace multipunto. Debido a esto los diferentes medios de transmisión tendrán diferentes velocidades de conexión que se adaptarán a utilizaciones dispares.
Dentro de los medios de transmisión guiados, los más utilizados en el campo de las comunicaciones y la interconexión de computadoras son:
  • El par trenzado: Consiste en un par de hilos de cobre conductores cruzados entre sí, con el objetivo de reducir el ruido de diafonía. A mayor número de cruces por unidad de longitud, mejor comportamiento ante el problema de diafonía.
Existen dos tipos de par trenzado:
·         Protegido: Shielded Twisted Pair (STP)
·         No protegido: Unshielded Twisted Pair (UTP)
El UTP son las siglas de Unshielded Twisted Pair. Es un cable de pares trenzado y sin recubrimiento metálico externo, de modo que es sensible a las interferencias. Es importante guardar la numeración de los pares, ya que de lo contrario el Efecto del trenzado no será eficaz disminuyendo sensiblemente o incluso impidiendo la capacidad de transmisión. Es un cable Barato, flexible y sencillo de instalar. Las aplicaciones principales en las que se hace uso de cables de par trenzado son:
·         Bucle de abonado: Es el último tramo de cable existente entre el telefóno de un abonado y la central a la que se encuentra conectado. Este cable suele ser UTP Cat.3 y en la actualidad es uno de los medios más utilizados para transporte de banda ancha, debido a que es una infraestructura que esta implantada en el 100% de las ciudades.
·         Redes LAN: En este caso se emplea UTP Cat.5 o Cat.6 para transmisión de datos.Consiguiendo velocidades de varios centenares de Mbps. Un ejemplo de este uso lo constituyen las redes 10/100/1000BASE-T.
  • El cable coaxial: Se compone de un hilo conductor, llamado núcleo, y un mallazo externo separados por un dieléctrico o aislante.
  • La fibra óptica.
Cabe destacar que hay una gran cantidad de cables de diferentes características que tienen diversas utilidades en el mundo de las comunicaciones.
Medios de transmisión no guiados.
Los medios de transmisión no guiados son los que no confinan las señales mediante ningún tipo de cable, sino que las señales se propagan libremente a través del medio. Entre los medios más importantes se encuentran el aire y el vacío.
Tanto la transmisión como la recepción de información se lleva a cabo mediante antenas. A la hora de transmitir, la antena irradia energía electromagnética en el medio. Por el contrario en la recepción la antena capta las ondas electromagnéticas del medio que la rodea.
La configuración para las transmisiones no guiadas puede ser direccional y omnidireccional.
En la direccional, la antena transmisora emite la energía electromagnética concentrándola en un haz, por lo que las antenas emisora y receptora deben estar alineadas.
En la omnidireccional, la radiación se hace de manera dispersa, emitiendo en todas direcciones pudiendo la señal ser recibida por varias antenas. Generalmente, cuanto mayor es la frecuencia de la señal transmitida es más factible confinar la energía en un haz direccional.
La transmisión de datos a través de medios no guiados, añade problemas adicionales provocados por la reflexión que sufre la señal en los distintos obstáculos existentes en el medio. Resultando más importante el espectro de frecuencias de la señal transmitida que el propio medio de transmisión en sí mismo.
Según el rango de frecuencias de trabajo, las transmisiones no guiadas se pueden clasificar en tres tipos: radio, microondas y luz (infrarrojos/láser).
Medio de transmisión según su sentido
  • Simplex
Este modo de transmisión permite que la información discurra en un solo sentido y de forma permanente, con esta fórmula es difícil la corrección de errores causados por deficiencias de línea (TV).
  • Half-Duplex
En este modo la transmisión fluye cada vez, solo una de las dos estaciones del enlace punto a punto puede transmitir. Este método también se denomina en dos sentidos alternos (walkitoki).
  • Full-Duplex
Es el método de comunicación más aconsejable puesto que en todo momento la comunicación puede ser en dos sentidos posibles, es decir, que las dos estaciones simultáneamente pueden enviar y recibir datos y así pueden corregir los errores de manera instantánea y permanente.
Cable coaxial
Cable coaxial RG-59.
A: Cubierta protectora de plástico
B: Malla de cobre
C: Aislante
D: Núcleo de cobre.
El cable coaxial fue creado en la década de los 30, y es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla o blindaje, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante.
El conductor central puede estar constituido por un alambre sólido o por varios hilos retorcidos de cobre; mientras que el exterior puede ser una malla trenzada, una lámina enrollada o un tubo corrugado de cobre o aluminio. En este último caso resultará un cable semirrígido.
Debido a la necesidad de manejar frecuencias cada vez más altas y a la digitalización de las transmisiones, en años recientes se ha sustituido paulatinamente el uso del cable coaxial por el de fibra óptica, en particular para distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior.
Construcción de un cable coaxial
La construcción de cables coaxiales varía mucho. La elección del diseño afecta al tamaño, flexibilidad y el cable pierde propiedades.
Un cable coaxial consta de un núcleo de hilo de cobre rodeado por un aislante, un apantallamiento de metal trenzado y una cubierta externa.
El apantallamiento tiene que ver con el trenzado o malla de metal (u otro material) que rodea los cables.
El apantallamiento protege los datos que se transmiten, absorbiendo el ruido, de forma que no pasa por el cable y no existe distorsión de datos. Al cable que contiene una lámina aislante y una capa de apantallamiento de metal trenzado se le llama cable apantallado doble. Para grandes interferencias, existe el apantallamiento cuádruple. Este apantallamiento consiste en dos láminas aislantes, y dos capas de apantallamiento de metal trenzado.
El núcleo de un cable coaxial transporta señales electrónicas que forman la información. Este núcleo puede ser sólido (normalmente de cobre) o de hilos.
Rodeando al núcleo existe una capa aislante dieléctrica que la separa de la malla de hilo. La malla de hilo trenzada actúa como masa, y protege al núcleo del ruido eléctrico y de la distorsión que proviene de los hilos adyacentes.
El núcleo y la malla deben estar separados uno del otro. Si llegaran a tocarse, se produciría un cortocircuito, y el ruido o las señales que se encuentren perdidas en la malla, atravesarían el hilo de cobre.
Un cortocircuito ocurre cuando dos hilos o un hilo y una tierra se ponen en contacto. Este contacto causa un flujo directo de corriente (o datos) en un camino no deseado.
En el caso de una instalación eléctrica común, un cortocircuito causará el chispazo y el fundido del fusible o del interruptor automático. Con dispositivos electrónicos que utilizan bajos voltajes, el efecto es menor, y casi no se detecta. Estos cortocircuitos de bajo voltaje causan un fallo en el dispositivo y lo normal es que se pierdan los datos que se estaban transfiriendo.
Una cubierta exterior no conductora (normalmente hecha de goma, teflón o plástico) rodea todo el cable, para evitar las posibles descargas eléctricas.
El cable coaxial es más resistente a interferencias y atenuación que el cable de par trenzado, por esto hubo un tiempo que fue el más usado.
La malla de hilos absorbe las señales electrónicas perdidas, de forma que no afecten a los datos que se envían a través del cable interno. Por esta razón, el cable coaxial es una buena opción para grandes distancias y para soportar de forma fiable grandes cantidades de datos con un sistema sencillo.
En los cables coaxiales los campos debidos a las corrientes que circulan por el interno y externo se anulan mutuamente.
Características
La característica principal de la familia RG-58 es el núcleo central de cobre. Tipos:
- RG-58/U: Núcleo de cobre sólido.
- RG-58 A/U: Núcleo de hilos trenzados.
- RG-59: Transmisión en banda ancha (TV).
- RG-6: Mayor diámetro que el RG-59 y considerado para frecuencias más altas que este, pero también utilizado para transmisiones de banda ancha.
- RG-62: Redes ARCnet.
Estándares
La mayoría de los cables coaxiales tienen una impedancia característica de 50, 52, 75, o 93 Ω. La industria de RF usa nombres de tipo estándar para cables coaxiales. En las conexiones de televisión (por cable, satélite o antena), los cables RG-6 son los más comúnmente usados para el empleo en el hogar, y la mayoría de conexiones fuera de Europa es por conectores F.
Tipos
Existen múltiples tipos de cable coaxial, cada uno con un diámetro e impedancia diferentes. El cable coaxial no es habitualmente afectado por interferencias externas, y es capaz de lograr altas velocidades de transmisión en largas distancias. Por esa razón, se utiliza en redes de comunicación de banda ancha (cable de televisión) y cables de banda base (Ethernet).
El tipo de cable que se debe utilizar depende de la ubicación del cable. Los cables coaxiales pueden ser de dos tipos:
El Policloruro de vinilo (PVC)
Es un tipo de plástico utilizado para construir el aislante y la cubierta protectora del cable en la mayoría de los tipos de cable coaxial.
El cable coaxial de PVC es flexible y se puede instalar fácilmente en cualquier lugar. Sin embargo, cuando se quema, desprende gases tóxicos.
Plenum
El plenum contiene materiales especiales en su aislamiento y en una clavija del cable. Estos materiales son resistentes al fuego y producen una mínima cantidad de humos tóxicos. Sin embargo, el cableado plenum es más caro y menos flexible que el PVC. En ocasiones similares el cable coaxial es el de mayor uso mundial.
Aplicaciones tecnológicas
Se puede encontrar un cable coaxial:
  • entre la antena y el televisor;
  • en las redes urbanas de televisión por cable (CATV) e Internet;
  • entre un emisor y su antena de emisión (equipos de radioaficionados);
  • en las líneas de distribución de señal de vídeo (se suele usar el RG-59);
  • en las redes de transmisión de datos como Ethernet en sus antiguas versiones 10BASE2 y 10BASE5;
  • en las redes telefónicas interurbanas y en los cables submarinos.
Antes de la utilización masiva de la fibra óptica en las redes de telecomunicaciones, tanto terrestres como submarinas, el cable coaxial era ampliamente utilizado en sistemas de transmisión de telefonía analógica basados en la multiplexación por división de frecuencia (FDM), donde se alcanzaban capacidades de transmisión de más de 10.000 circuitos de voz.
Asimismo, en sistemas de transmisión digital, basados en la multiplexación por división de tiempo (TDM), se conseguía la transmisión de más de 7.000 canales de 64 kbps
El cable utilizado para estos fines de transmisión a larga distancia necesitaba tener una estructura diferente al utilizado en aplicaciones de redes LAN, ya que, debido a que se instalaba enterrado, tenía que estar protegido contra esfuerzos de tracción y presión, por lo que normalmente aparte de los aislantes correspondientes llevaba un armado exterior de acero.
Cable de par trenzado
El cable de par trenzado es un medio de conexión usado en telecomunicaciones en el que dos conductores eléctricos aislados son entrelazados para anular las interferencias de fuentes externas y diafonía de los cables adyacentes. Fue inventado por Alexander Graham Bell
Descripción
El entrelazado de los cables disminuye la interferencia debido a que el área de bucle entre los cables, la cual determina el acoplamiento eléctrico en la señal, se ve aumentada. En la operación de balanceado de pares, los dos cables suelen llevar señales paralelas y adyacentes (modo diferencial), las cuales son combinadas mediante sustracción en el destino. El ruido de los dos cables se aumenta mutuamente en esta sustracción debido a que ambos cables están expuestos a interferencias electromagnéticas similares.
La tasa de trenzado, usualmente definida en vueltas por metro, forma parte de las especificaciones de un tipo concreto de cable. Cuanto menor es el número de vueltas, menor es la atenuación de la diafonía. Donde los pares no están trenzados, como en la mayoría de las conexiones telefónicas residenciales, un miembro del par puede estar más cercano a la fuente que el otro y, por tanto, expuesto a niveles ligeramente distintos de interferencias electromagnéticas.
Historia
Los primeros teléfonos utilizaban líneas telegráficas, o alambres abiertos de un solo conductor de circuitos de conexión a tierra. En la década de 1880-1890 fueron instalados tranvías eléctricos en muchas ciudades de Estados Unidos, lo que indujo ruido en estos circuitos. Al ser inútiles las demandas por este asunto, las compañías telefónicas pasaron a los sistemas de circuitos balanceados, que tenían el beneficio adicional de reducir la atenuación, y por lo tanto, cada vez mayor alcance.
Como la distribución de energía eléctrica se hizo cada vez más común, esta medida resultó insuficiente. Dos cables, colgados a ambos lados de las barras cruzadas en los postes de alumbrado público, compartían la ruta con las líneas de energía eléctrica. En pocos años, el creciente uso de la electricidad trajo de nuevo un aumento de la interferencia, por lo que los ingenieros idearon un método llamado transposición de conductores, para cancelar la interferencia. En este método, los conductores intercambiaban su posición una vez por cada varios postes. De esta manera, los dos cables recibirían similares interferencias electromágnéticas de las líneas eléctricas. Esto representó una rápida implementación del trenzado, a razón de unos cuatro trenzados por kilómetro, o seis por milla. Estas líneas balanceadas de alambre abierto con transposiciones periódicas aún subsisten, hoy en día, en algunas zonas rurales de Estados Unidos.
Los cables de par trenzado fueron inventados por Alexander Graham Bell en 1881.[1] En 1900, el conjunto de la red estadounidense de la línea telefónica era o de par trenzado o hilo abierto con la transposición a la protección contra interferencias. Hoy en día, la mayoría de los millones de kilómetros de pares trenzados en el mundo está fija en instalaciones aéreas, propiedad de las compañías telefónicas, y se utiliza para el servicio de voz, y sólo son manejados o incluso vistos por los trabajadores telefónicos.
Tipos
Cable FTP.
Cable STP.
  • UTP acrónimo de Unshielded Twisted Pair o Cable trenzado sin apantallar. Son cables de pares trenzados sin apantallar que se utilizan para diferentes tecnologías de red local. Son de bajo costo y de fácil uso, pero producen más errores que otros tipos de cable y tienen limitaciones para trabajar a grandes distancias sin regeneración de la señal.
  • STP, acrónimo de Shielded Twisted Pair o Par trenzado apantallado. Se trata de cables de cobre aislados dentro de una cubierta protectora, con un número específico de trenzas por pie. STP se refiere a la cantidad de aislamiento alrededor de un conjunto de cables y, por lo tanto, a su inmunidad al ruido. Se utiliza en redes de ordenadores como Ethernet o Token Ring. Es más caro que la versión no apantallada o UTP.
  • FTP, acrónimo de Foiled Twisted Pair o Par trenzado con pantalla global. Son unos cables de pares que poseen una pantalla conductora global en forma trenzada. Mejora la protección frente a interferencias y su impedancia es de 12 ohmios
Categorías
La especificación 568A Commercial Building Wiring Standard de la asociación Industrias Electrónicas e Industrias de las Telecomunicaciones (EIA/TIA) especifica el tipo de cable UTP que se utilizará en cada situación y construcción. Dependiendo de la velocidad de transmisión, ha sido dividida en diferentes categorías de acuerdo a esta tabla:
Características de la transmisión
Está limitado en distancia, ancho de banda y tasa de datos. También destacar que la atenuación es una función fuertemente dependiente de la frecuencia. La interferencia y el ruido externo también son factores importantes, por eso se utilizan coberturas externas y el trenzado. Para señales analógicas se requieren amplificadores cada 5 o 6 kilómetros, para señales digitales cada 2 ó 3. En transmisiones de señales analógicas punto a punto, el ancho de banda puede llegar hasta 250 kHz. En transmisión de señales digitales a larga distancia, el data rate no es demasiado grande, no es muy efectivo para estas aplicaciones.
En redes locales que soportan ordenadores locales, el data rate puede llegar a 10 Mbps (Ethernet) y 100 Mbps (Fast-Ethernet).
En el cable par trenzado de cuatro pares, normalmente solo se utilizan dos pares de conductores, uno para recibir (cables 3 y 6) y otro para transmitir (cables 1 y 2), aunque no se pueden hacer las dos cosas a la vez, teniendo una trasmisión half-duplex. Si se utilizan los cuatro pares de conductores la transmisión es full-duplex.

Ventajas:
  • Bajo costo en su contratación.
  • Alto número de estaciones de trabajo por segmento.
  • Facilidad para el rendimiento y la solución de problemas.
  • Puede estar previamente cableado en un lugar o en cualquier parte.
Desventajas:
  • Altas tasas de error a altas velocidades.
  • Ancho de banda limitado.
  • Baja inmunidad al ruido.
  • Baja inmunidad al efecto crosstalk (diafonía)
  • Alto coste de los equipos.
  • Distancia limitada (100 metros por segmento).
Variantes menores del cable par trenzado
Par trenzado cargado: Es un par trenzado al cual se le añade intencionadamente inductancia, muy común en las líneas de telecomunicaciones, excepto para algunas frecuencias. Los inductores añadidos son conocidos como bobinas de carga y reducen la distorsión.
Par trenzado sin carga: Los pares trenzados son a título individual en régimen de esclavo para aumentar la robustez del cable.
Cable trenzado de cinta: Es una variante del estándar de cable de cinta donde los conductores adyacentes están en modo esclavo y trenzados. Los pares trenzados son ligeramente esclavos unos de los otros en formato de cinta. Periódicamentes a lo largo de la cinta hay pequeñas secciones con no trenzados habilitados conectores y cabeceras pcb para ser terminadas usando la típica técnica de cable de cinta IDC.
Fibra óptica
Un ramo de fibras ópticas.
Un cable de fibra óptica de TOSLINK para audio iluminado desde un extremo.
La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.
Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio o cable. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagneticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.
Características
La fibra óptica es una guía de ondas dieléctrica que opera a frecuencias ópticas.
Núcleo y revestimiento de la fibra óptica.
Cada filamento consta de un núcleo central de plástico o cristal (óxido de silicio y germanio) con un alto índice de refracción, rodeado de una capa de un material similar con un índice de refracción ligeramente menor. Cuando la luz llega a una superficie que limita con un índice de refracción menor, se refleja en gran parte, cuanto mayor sea la diferencia de índices y mayor el ángulo de incidencia, se habla entonces de reflexión interna total.
En el interior de una fibra óptica, la luz se va reflejando contra las paredes en ángulos muy abiertos, de tal forma que prácticamente avanza por su centro. De este modo, se pueden guiar las señales luminosas sin pérdidas por largas distancias.
A lo largo de toda la creación y desarrollo de la fibra óptica, algunas de sus características han ido cambiando para mejorarla. Las características más destacables de la fibra óptica en la actualidad son:
  • Cobertura más resistente: La cubierta contiene un 25% más material que las cubiertas convencionales.
  • Uso dual (interior y exterior): La resistencia al agua y emisiones ultravioleta, la cubierta resistente y el funcionamiento ambiental extendido de la fibra óptica contribuyen a una mayor confiabilidad durante el tiempo de vida de la fibra.
  • Mayor protección en lugares húmedos: Se combate la intrusión de la humedad en el interior de la fibra con múltiples capas de protección alrededor de ésta, lo que proporciona a la fibra, una mayor vida útil y confiabilidad en lugares húmedos.
  • Empaquetado de alta densidad: Con el máximo número de fibras en el menor diámetro posible se consigue una más rápida y más fácil instalación, donde el cable debe enfrentar dobleces agudos y espacios estrechos. Se ha llegado a conseguir un cable con 72 fibras de construcción súper densa cuyo diámetro es un 50% menor al de los cables convencionales.
Funcionamiento
Los principios básicos de su funcionamiento se justifican aplicando las leyes de la óptica geométrica, principalmente, la ley de la refracción (principio de reflexión interna total) y la ley de Snell.
Su funcionamiento se basa en transmitir por el núcleo de la fibra un haz de luz, tal que este no atraviese el revestimiento, sino que se refleje y se siga propagando. Esto se consigue si el índice de refracción del núcleo es mayor al índice de refracción del revestimiento, y también si el ángulo de incidencia es superior al ángulo limite.
Ventajas
1.- Una banda de paso muy ancha, lo que permite flujos muy elevados (del orden del Ghz).
2.- Pequeño tamaño, por tanto ocupa poco espacio.
3.- Gran flexibilidad, el radio de curvatura puede ser inferior a 1 cm, lo que facilita la instalación enormemente.
4.- Gran ligereza, el peso es del orden de algunos gramos por kilómetro, lo que resulta unas nueve veces menos que el de un cable convencional.
5.- Inmunidad total a las perturbaciones de origen electromagnético, lo que implica una calidad de transmisión muy buena, ya que la señal es inmune a las tormentas, chisporroteo...
6.- Gran seguridad: la intrusión en una fibra óptica es fácilmente detectable por el debilitamiento de la energía luminosa en recepción, además, no radia nada, lo que es particularmente interesante para aplicaciones que requieren alto nivel de confidencialidad.
7.- No produce interferencias.
8.- Insensibilidad a los parásitos, lo que es una propiedad principalmente utilizada en los medios industriales fuertemente perturbados (por ejemplo, en los túneles del metro). Esta propiedad también permite la coexistencia por los mismos conductos de cables ópticos no metálicos con los cables de energía eléctrica.
9.- Atenuación muy pequeña independiente de la frecuencia, lo que permite salvar distancias importantes sin elementos activos intermedios.
10.- Gran resistencia mecánica (resistencia a la tracción, lo que facilita la instalación).
11.- Resistencia al calor, frío, corrosión.
12.- Facilidad para localizar los cortes gracias a un proceso basado en la telemetría, lo que permite detectar rápidamente el lugar y posterior reparación de la avería, simplificando la labor de mantenimiento.
Desventajas
A pesar de las ventajas antes enumeradas, la fibra óptica presenta una serie de desventajas frente a otros medios de transmisión, siendo las más relevantes las siguientes:
  • La alta fragilidad de las fibras.
  • Necesidad de usar transmisores y receptores más caros.
  • Los empalmes entre fibras son difíciles de realizar, especialmente en el campo, lo que dificulta las reparaciones en caso de ruptura del cable.
  • No puede transmitir electricidad para alimentar repetidores intermedios.
  • La necesidad de efectuar, en muchos casos, procesos de conversión eléctrica-óptica.
  • La fibra óptica convencional no puede transmitir potencias elevadas.[2]
  • No existen memorias ópticas.
Así mismo, el costo de la fibra sólo se justifica cuando su gran capacidad de ancho de banda y baja atenuación son requeridos. Para bajo ancho de banda puede ser una solución mucho más costosa que el conductor de cobre.
La fibra óptica no transmite energía eléctrica, esto limita su aplicación donde el terminal de recepción debe ser energizado desde una línea eléctrica. La energía debe proveerse por conductores separados.
Las moléculas de hidrógeno pueden difundirse en las fibras de silicio y producir cambios en la atenuación. El agua corroe la superficie del vidrio y resulta ser el mecanismo más importante para el envejecimiento de la fibra óptica.
Incipiente normativa internacional sobre algunos aspectos referentes a los parámetros de los componentes, calidad de la transmisión y pruebas.